
An Executable Intermediate Representation for
Retargetable Compilation and High-Level Code

Optimization
Rainer Leupers, Oliver Wahlen, Manuel Hohenauer, Tim Kogel

Aachen University of Technology (RWTH)
Integrated Signal Processing Systems

Aachen, Germany
Email: leupers@iss.rwth-aachen.de

Peter Marwedel
University of Dortmund

Dept. of Computer Science 12
Dortmund, Germany

Email: marwedel@cs.uni-dortmund.de

Abstract— Due to fast time-to-market and IP reuse require-
ments, an increasing amount of the functionality of embedded
HW/SW systems is implemented in software. As a consequence,
software programming languages like C play an important role in
system specification, design, and validation. Besides many other
advantages, the C language offers executable specifications, with
clear semantics and high simulation speed. However, virtually
any tool operating on C specifications has to convert C sources
into some intermediate representation (IR), during which the
executability is normally lost. In order to overcome this problem,
this paper describes a novel IR format, called IR-C, for the use
in C based design tools, which combines the simplicity of three
address code with the executability of C. Besides the IR-C format
and its generation from ANSI C, we also describe its applications
in the areas of validation, retargetable compilation, and source-
level code optimization.

I. INTRODUCTION

The growing importance of the C programming language
and its derivatives (e.g. [1], [2], [3]) in embedded system
design implies that a large amount of tools for translating C
specifications into other formats are required: For instance,
compilers for translating C programs into assembly programs,
and C based hardware design tools for mapping C specifica-
tions into equivalent HDL specifications. In order to perform
such translations, it is very common to use a frontend that, as
a first step, translates the original C program into a machine-
independent intermediate representation (IR).

The most widespread IR format is three address code [4].
This format consists of a sequence of simple statements, each
of which references at most three variables: two arguments
and one result. The main motivation for using three address
code is its simple structure. As compared to an original C
program, all complex arithmetic expressions, nested control
flow constructs, as well as implicit address arithmetic for
array or structure accesses are broken down into sequences of
primitive assembly-like assignments and jumps. In turn, this
strongly facilitates the implementation of tools for processing
C programs, such as IR optimization passes, compiler back-
ends, or HDL generators. A three address code IR can also be
easily translated into data flow graphs (DFGs) which reflect

potential parallelism and which are the usual input format for
code generation and scheduling algorithms.

For the purpose of hardware synthesis from C, the IR
generation can be viewed as a specification refinement that
lowers an initially high-level specification in order to get
closer to the final implementation, while retaining the original
semantics. We will explain later, how this refinement step can
be validated.

However, the executability of C, which is one of its major
advantages, is usually lost after an IR has been generated.
Executability means that a C specification can be compiled
into a machine program for a host machine which can be
executed on the host for validation or simulation purposes.
Normally, this is no longer possible with the IR. Even though
the notion of three address code is intuitively clear, there is no
standard format for a three address code IR, but the detailed
implementation is typically tool-specific.

The purpose of this paper is to present a new IR format,
called IR-C, that retains the executability of the C language,
while simultaneously offering the simplicity of three address
code. The key idea in our approach is to represent the IR itself
in C syntax. This is possible, since the C language allows
for an extremely low-level, assembly-like specification of
programs. Therefore, IR-C can still be compiled and executed
like the corresponding original C code, from which the IR has
been generated.

Note that the executability of IR-C is not required for all
types of applications. For instance, in a C compiler IR-C can
be used just like any other three address code format as a file
exchange format, without the need to compile it onto a host
platform.

Applications of the proposed IR format include validation
and source-level optimization (which exploit the executability
of IR-C) as well as retargetable compilation, which is an en-
abling technology for architecture exploration for application
specific processors (ASIPs).

Even though IR-C is a quite general machine-independent
format, it is mostly dedicated to the use in embedded system
design tools, due to the following reasons:

• The advantages of IR-C and the compilation methodology
built around it have to be paid with lower compilation
speed than in machine-specific compilers for general
purpose processors. However, it is widely accepted that
for embedded systems high compilation speed has lower
priority than retargetability and high code quality.

• Due to the frequent use of non-standard ASIPs, it is
mostly in the area of embedded systems where one
has to deal with retargetable compilation and cross-
compilation/validation. As will be explained, these tasks
are explicitly supported by IR-C.

The structure of this paper is as follows. After a discussion
of related work in section II, we describe the global structure
of IR-C in section III. In section IV, we outline how the IR-
C representation for some input C program is generated by
an ANSI C frontend, and we show how the executability of
IR-C is exploited for validation. In section V, we demonstrate
how IR-C can be used in practice for compilation and code
optimization. Finally, section VI gives conclusions.

II. RELATED WORK

Most C compilers generate a machine-independent IR be-
fore translating code into assembly. However, virtually all
such tools use a custom IR format, and to our knowledge
an executable three address code IR with the capabilities
mentioned above so far has not been implemented.

A well-known example is the frontend that comes with the
GNU C compiler GCC [5], whose IR is neither machine-
independent nor executable. Additionally, the GCC is re-
stricted to certain processor classes. Likewise, the retargetable
compiler LCC [6] comes with a C frontend, but the IR is
given in the form of DFGs and hence is not executable. The
SUIF-2 system [7] allows for emitting the internal IR in C
syntax, but the generated C code is still more complex than
three address code. In contrast, the IR format proposed in
this paper allows to get closer to the assembly level in a still
machine-independent fashion.

Further related work includes source-level (e.g. C-to-C)
transformation techniques. The advantage of C-to-C transfor-
mations as opposed to assembly-level optimizations is that if
a given program is optimized at the C level, it can still be
passed to any C compiler for any target machine. Thereby, a
high degree of retargetability is ensured. Examples of C-level
transformations include the ADOPT approach [8] for address
code optimization in multimedia applications, loop transforma-
tions [9], array-to-pointer transformations for optimizing DSP
applications [10], as well as pattern matching and rewriting
tools, e.g. [11]. However, such approaches use to work on
higher level IR formats than three address code. Hence, they
can be considered complementary to our approach.

III. IR-C STRUCTURE

This section briefly describes the overall structure of IR-
C. We assume that the reader is familiar with basics of the C
language. Since our goal is a simple three address code format,
all high-level C constructs, such as for and while-loops, nested

if-then-else-statements, switch-statements, complex arithmetic
expressions and conditionals, and implicit address arithmetic
for array and structure access are replaced by sequences of
primitive statements in IR-C.

We generate one IR-C file for each given C source file. The
IR-C file is structured into symbol tables and functions. The IR
functions directly correspond to the functions in the original
C code, i.e., there is one IR-C function for each C function.
Each function is a list of IR statements, which exist in five
different types:

1. Assignments: An assignment is a three address code C
statement with a destination and at most one operation or a
function call on its right hand side.

2. Jumps: A jump is a C ”goto” statement with a target label.

3. Branches: A branch is a C if-statement of the general form
if (c) goto label, where the condition c is a variable
or a constant.

4. Labels: Labels are directly represented as C labels.

5. Return statements: A return from a function call is either
a ”void” return statement, or a return with a value of the form
return x; for some variable or a constant x.

By means of the IR generation technique described in the
following section, any C program can be translated into a
functionally equivalent IR using only the above five statement
types. A major point is that the C language allows to express
all IR constructs directly in C syntax. Therefore, any valid
IR-C code is simultaneously a valid (low-level) C code.

Information about identifiers is kept in symbol tables. Table
entries store the type of a symbol, as well as additional
information such as its storage class, e.g. extern, static,
or register. Like for IR statements, all symbol table infor-
mation can be expressed in C, by means of usual declaration
lists.

An important difference between IR-C and C is that, for
sake of a simpler structure, we only allow for two different
scopes of identifiers: either global or local. There is one global
symbol table, as well as one local table per function. In order
to avoid name conflicts between identical identifiers declared
within nested local scopes, a unique numerical ID is appended
as a suffix to all local symbols. Naturally, this is not done for
global variables in order to enable linking between separately
compiled C modules.

IV. IR-C GENERATION AND VALIDATION

While the IR structure is (and should be) very simple,
the generation of the IR for a given C program is a more
difficult task. The main challenge is to generate an IR which,
when compiled with a C compiler, shows exactly the same
functionality as the original C program. This guarantees a
clean semantics for IR-C, because it is exactly identical to
a subset of the ANSI C semantics. In addition, it ensures
executability of IR-C, which is useful for validation and
source-to-source transformations.

We have developed an ANSI C frontend as a part of the
LANCE compiler system [12] that uses a syntax-directed
translation mechanism, using an attribute grammar compiling
system [13]. For each rule of the C language grammar there
is one function that translates a certain C construct into an
equivalent sequence of three address code statements. The
general concept is simple: complex statements are split into
simple ones by insertion of auxiliary variables and appropriate
”goto” constructs. However, care must be taken in the ordering
of IR statements and translation of implicit address arithmetic.
We exemplify IR generation for the following piece of C code:

void f ()
{

int i ,A[10];
i = A[2]++ > 1 ? 2 : 3;

}

For the IR for function f, we need 8 auxiliary variables,
denoted as t1 to t8. These are declared in the local symbol
table of f, together with the original local variables A and i.
The symbol table in C syntax looks as follows:

int A[10];
char ∗t1 ,∗ t3 ;
int i , t2 , t5 , t6 , t7 , t8 ;
int ∗t4 ;

The first step in IR generation is to compute the value
of A[2]. If we assume that an integer value occupies four
memory words1, the array index 2 needs to be scaled by 4 and
must be added to the base address of array A in order to obtain
the effective address ”A + 8” of A[2]. When implementing
this scheme in three address code, it is important to take into
account that in C all constants added to pointers are implicitly
scaled, e.g., adding a constant c to some integer pointer p
actually increments p by 4 * c. Therefore, we perform all
address arithmetic in IR-C exclusively on char pointers, since
characters are guaranteed to occupy only a single memory
word. This leads to the following IR-C code segment:

t3 = (char ∗)A; // cast base to char∗
t2 = 2 ∗ 4; // compute offset
t1 = t3 + t2 ; // compute effective address
t4 = (int ∗) t1 ; // cast back to int∗
t5 = ∗t4 ; // load value from memory

The post-increment of A[2] is implemented as follows.
The address stored in t4 can be reused. Note that auxiliary
variable t5 still contains the original value of A[2]. This is
necessary, since its value before the increment is required in
the comparison.

t6 = t5 + 1; // increment
∗t4 = t6 ; // store back into A[2]

Next, the condition A[2] > 1 is evaluated and the result
is stored in another auxiliary variable t7. The conditional
expression itself is translated by means of a branch and two

1The size and the memory alignment of all data types are passed as
configuration parameters to the ANSI C frontend.

original C source IR generation IR C source

C compiler C compiler

executable 1 executable 2test input data

output 1 output 2comparison

Fig. 1. Validation methodology

labels. Depending on the comparison result, auxiliary variable
t8 is loaded with either 2 or 3. When control flow joins (label
L2), variable i finally gets its correct value from t8. In total,
the IR for this looks as follows:

t7 = t5 > 1; // compare
if (t7) goto L1; // jump if >
t8 = 3; // load 3 if <=
goto L2; // goto join point

L1: t8 = 2; // load 2 if >
L2: i = t8 ; // move result into i

Using the IR-C intermediate representation allows us to get
as close as possible to assembly code, while still retaining
machine-independence. Besides the rewriting of high-level
control structures and the insertion of auxiliary variables, the
IR-C format also explicitly comprises all address arithmetic
and cast operations. In addition, the local identifier hierarchy
is flattened, local static variables are transformed into unique
global variables, and initialization code for local variables is
automatically generated. Thus, IR-C already represents much
explicit information at a machine-independent level, which any
compiler needs to generate.

The C to IR-C translation process can be implemented very
efficiently. On a 600 MHz Linux PC, the LANCE ANSI C
frontend emits up to 10,000 IR statements per CPU second,
including file I/O. Due to the insertion of new variables and
statements, the generated IR-C file is typically about twice
as large as the original C file. However, this has no practical
consequences for IR-C based tools.

Since a C compiler is located at the bottom of the software
development tool chain, its correctness is of outstanding
importance. In our case, the ANSI C frontend that generates
IR-C (as well as all other LANCE tools that manipulate or
optimize IR-C) are validated by exploiting the executability
of IR-C. Fig. 1 illustrates the methodology. Both the original
C program and the IR generated by the frontend are compiled
with an existing C compiler for the host machine, which is
supposed to be correct. The equivalence of the two executables
is checked by means of a comparison between their outputs
for a representative set of test input data. Any difference in
the outputs indicates an implementation error. For regression
tests, this validation process can be easily automated.

Naturally, this approach cannot provide a correctness proof.
However, in contrast to custom, non-executable, IR formats,
it allows for validating a number of compiler components

Fig. 2. DDD debugger GUI with IR-C debug support

even without a processor-specific backend and instruction-set
simulator.

In practice, a good fault coverage is ensured when using a
representative suite of C programs and test inputs. In our case,
we used a large test program suite of C applications, including
complex program packages like MPEG, JPEG, GSM, BISON,
GZIP, a BDD package, a VHDL parser, and a 6502 C compiler.
In addition, we have developed a customized interface to
the Data Display Debugger DDD [14], a popular graphical
frontend to the GNU debugger GDB. This debugger interface
allows for monitoring program execution synchronously at the
levels of C source, IR-C, and machine code (fig. 2).

V. APPLICATIONS

A. Retargetable compilation

Apart from a few numerical parameters for type bit width
and memory alignment, IR-C is a machine-independent repre-
sentation. Therefore, IR-C can be mapped into assembly code
for different target machines by processor-specific backends.
The importance of this concept of retargetable compilation
[16], [17], [18] in system-level design is well-known. It

+

-

+

*

dc

a b

e

+

-

+

*

dc

a b

e

ADD

SUB

MAC

b) c)a)

MAC

SUBADD
+ -

+*

Fig. 3. DFT covering. a) DFT, b) instruction patterns, c) possible covering

allows to conveniently study the effects of varying architec-
tural features of an ASIP on code performance, size, and
power consumption, thereby enabling processor architecture
exploration.

One key issue in retargetable compilers is to maximize
the reuse of compiler components, so as to reduce compiler
porting effort for new targets. The IR-C tool environment
supports this by automatic translation of IR-C into a machine-
independent data flow tree (DFT) format. DFTs are a special
case of general data flow graphs (DFGs), which graphically
represent the data dependencies between IR statements. Each
edge from node n to m denotes a use of the value generated
by statement n in statement m. While three address code IR
formats very well support the implementation of machine-
independent code optimizations such as constant folding or
dead code elimination [21], DFG/DFT formats are generally
preferred for backend design, due to their higher expressive-
ness.

A DFT is a tree-shaped DFG, i.e. a connected DFG with-
out common subexpressions. Due to a lower computational
complexity as compared to general DFGs, DFTs are the basic
program representation most commonly used in the code
selector component of a compiler. The code selector maps
the machine-independent IR into machine specific assembly
instructions. The most popular technique for code selection is
tree pattern matching with dynamic programming [19]. This
can be visualized as a processor of covering a DFT by a
minimum cost set of instruction pattern instances (fig. 3).

The IR-C to DFT translator produces maximum size DFTs
in a data format fully compatible to widespread code generator
generator tools like IBURG [20] and OLIVE [17]. As an
example, figs. 4, 5, and 6 provide a sample C source, its
corresponding IR-C representation, and the generated DFT
representation in a textual format. In this way, a retargetable
interface to the compiler backend is provided.

The detailed IR to DFT translation is not trivial due to
potential undesired side effects during linear ordering of DFTs
(e.g. due to function calls modifying global variables, or
pointer aliases). Hence, also the DFT generation phase in a
compiler should be validated. We achieve this by a tool that
emits the DFT representation in C syntax. This permits to
reuse the validation methodology from fig. 1 also for the DFT
generator.

By generating DFTs in a format accepted by common tools
like OLIVE, retargeting time is reduced significantly. The

int A;
void main(int a , int b, int c)
{ int x,y,z;

x = a + b;
y = b ∗ c;
z = a − c;
A += x + y + z;
return ;

}

Fig. 4. Sample C code

int A;
void main(int a 3 , int b 4, int c 5)
{ int x 7,y 8,z 9 , t1 , t2 , t3 , t4 , t5 , t7 ;

int ∗ t6 ;

t1 = a 3 + b 4;
x 7 = t1 ;
t2 = b 4 ∗ c 5;
y 8 = t2 ;
t3 = a 3 − c 5;
z 9 = t3 ;
t4 = x 7 + y 8;
t5 = t4 + z 9;
t6 = &A;
t7 = ∗t6 + t5 ;
∗t6 = t7 ;
return ;

}

Fig. 5. IR-C for code from fig. 4

(WRITE [’t6 = &A;’]
(ADDR [’A’ int] & ’A’))

(STORE [’*t6 = t7;’]
(READ [’t6’ int *])
(PLUS [’*t6 + t5’ int]

(LOAD [’*t6’ int]
(READ [’t6’ int *]))

(PLUS [’t4 + z_9’ int]
(PLUS [’x_7 + y_8’ int]

(PLUS [’a_3 + b_4’ int]
(READARG [’a_3’ int] arg no 1)
(READARG [’b_4’ int] arg no 2))

(MULT [’b_4 * c_5’ int]
(READARG [’b_4’ int] arg no 2)
(READARG [’c_5’ int] arg no 3)))

(MINUS [’a_3 - c_5’ int]
(READARG [’a_3’ int] arg no 1)
(READARG [’c_5’ int] arg no 3)))))

(VOIDRETURN [’return;’])

Fig. 6. Three DFTs generated for IR code from fig. 5. Symbols in capital
letters represent operators matched by the code selector. Brackets contain
debug information and node attributes.

TABLE I

Experimental results for C-to-C optimization

source orig C IR-C perf % DFT C perf %
dct 1.03 1.24 -20 1.00 +3
fft 2.90 2.95 -2 2.71 +7

gsm 1.31 1.40 -7 1.30 +1
lattice 1.69 1.92 -14 0.85 +50

me 1.88 2.61 -39 1.29 +31
lms 0.30 0.39 -30 0.40 -33

developer can directly concentrate on the machine-specific
code selector when retargeting the compiler to a new machine.
Naturally, the design of even more machine-specific compiler
components, such as the register allocator, cannot be supported
this way, and more effort has to be spent for highly optimizing
backends.

B. Source level optimization

Besides compiler development, a further application area of
the IR-C format is source-level code optimization. Like in the
case of validation, one can exploit the executability of IR-C
for C-to-C optimization: Since IR-C is emitted as a C subset,
any IR-C optimization is a low-level C-to-C optimization by
construction, and the output can be passed to any C compiler.
While complementary high-level source code transformation
tools like the ones mentioned in section II mostly require a
high-level IR, the three address code format of IR-C facilitates
the design of certain C-to-C transformations that are best
implemented at a low level close to assembly code. Simul-
taneously, we retain the most significant advantage of source-
level code optimization, namely machine-independence and
retargetability.

In order to demonstrate this, we have performed some
preliminary experiments with the IR-C to DFT translation tool
described in section V-A. A given original C code is first
translated into IR-C code by the C frontend, and the DFG
generator transforms the IR into DFT form and emits it in
C syntax. Both the original C program and the transformed
program are compiled with the same host compiler in order
to evaluate the performance.

For several DSP application routines we observed that this
transformation process can increase program performance as
compared to the original C specification. Table I gives results
for a discrete cosine transform (dct), Fast Fourier Transform
(fft), a routine from a GSM speech encoder (gsm), a lattice
filter (lattice), a motion estimator (me), and a least mean square
filter (lms). The C programs have been compiled using GNU
gcc 2.95.2 on a 600 MHz Linux PC.

Column 2 gives the CPU seconds required by the executa-
bles generated from the original C programs. Column 3 gives
the performance measured when compiling the generated IR-
C code without DFT construction, and column 5 shows the
performance for the IR-C code transformed into DFT form as
explained in section V-A.

Columns 4 and 6 mention the performance difference of the
executables relative to the original C code. As can be seen,

the executables generated from the unoptimized IR show a
lower performance than in case of the original code. This is
presumably due to the fact that the gcc compiler cannot cope
well with low-level C code consisting only of three address
code statements.

However, the situation changes drastically, when the IR-
C code is converted into DFT form. In this case, there
is generally a performance increase, as much as 50 % as
compared to the original C code.

Obviously, the reason for this improvement is that restruc-
turing the original C code into a canonical form of maximally
large DFTs opens up better optimization opportunities for
the C compiler. For instance, the larger the DFTs the more
effective is the DFT covering based code selection technique
mentioned in section V-A (fig. 3).

As indicated by the lms example in table I, unfortunately a
performance increase is not guaranteed by this methodology.
Due to its dependence on the source program structure, it
can also cause a performance loss. Further investigations are
required to predict performance gains or losses due to the C
to IR-C/DFT conversion.

VI. CONCLUSIONS

The growing importance of the C language in embedded
system design implies a growing need for tools capable of
processing C specifications. Three address code is a very
common IR format for such tools, but it is normally not
executable like the original C source. This limitation is
removed by the executable IR-C format proposed in this
paper. Its applications include validation of frontends and IR-
level optimization passes, retargetable compilation, as well as
source-level code optimization.

Based on IR-C, the stable compiler development tool chain
LANCE has been implemented. It comprises an ANSI C
frontend, a library of IR optimizations (including both clas-
sical “Dragon Book” techniques [21] and several advanced
optimizations from [4]), as well as the backend interface
mentioned in section V-A. Applications include industrial C
compilers for a Network Processor from Infineon Technologies
and Systemonic’s OnDSPTM platform, an energy-conscious
compiler for the ARM7 RISC [22], as well as numerous
research compiler prototypes.

The major benefit from IR-C in this context is the support
for validation and retargetable compilation, which largely
reduces compiler development effort. Development of oper-
ational (not yet heavily optimizing) compiler backends for
new target machines typically takes about 6 man-months.
Implementation and validation of a new IR-C optimization
module takes only 1-2 man-months.

The suite of tools built around the proposed IR-C format
is continuously being extended. The application of IR-C for
source-level (C-to-C) optimizations is still at an early stage
and will be further investigated.

REFERENCES

[1] G. Arnout: SystemC Standard, Asia South Pacific Design Automation
Conference (ASP-DAC), 2000

[2] D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, S. Zhao: SpecC: Specifica-
tion Language and Methodology, Kluwer Academic Publishers, 2000

[3] C Level Design Inc.: http://www.cleveldesign.com
[4] S.S. Muchnik: Advanced Compiler Design & Implementation, Morgan

Kaufmann Publishers, 1997
[5] Free Software Foundation: http://www.gnu.org
[6] C. Fraser, D. Hanson: A Retargetable C Compiler:

Design And Implementation, Addison-Wesley, 1995,
http://www.cs.princeton.edu/software/lcc

[7] The Stanford Compiler Group: http://suif.stanford.edu
[8] S. Gupta, R. Gupta, M. Miranda, F. Catthoor: Analysis of High-Level

Address Code Transformations for Programmable Processors, Design
Automation & Test in Europe (DATE), 2000

[9] H. Falk, P. Marwedel: Control Flow driven Splitting of Loop Nests at
the Source Code Level, Design, Automation and Test in Europe (DATE),
2003

[10] C. Liem, P.Paulin, A. Jerraya: Address Calculation for Retargetable
Compilation and Exploration of Instruction-Set Architectures, 33rd
Design Automation Conference (DAC), 1996

[11] M. Boekhold, I. Karkowski, H. Corporaal: Transforming and Paralleliz-
ing ANSI C Programs Using Pattern Recognition, High Performance
Computing and Networking Conference, 1999

[12] LANCE compiler: LS12-www.cs.uni-dortmund.de/lance
[13] K.M. Bischoff: Design, Implementation, Use, and Evaluation of Ox:

An Attribute-Grammer Compiling System based on Yacc, Lex, and
C, Technical Report 92-31, Dept. of Computer Science, Iowa State
University, 1992

[14] Data Display Debugger (DDD): http://www.gnu.org/software/ddd
[15] V. Zivojnovic, J.M. Velarde, C. Schläger, H. Meyr: DSPStone – A DSP-

oriented Benchmarking Methodology, Int. Conf. on Signal Processing
Applications and Technology (ICSPAT), 1994

[16] C. Liem: Retargetable Compilers for Embedded Core Processors,
Kluwer Academic Publishers, 1997

[17] A. Sudarsanam: Code Optimization Libraries for Retargetable Compi-
lation for Embedded Digital Signal Processors, Ph.D. thesis, Princeton
University, Department of Electrical Engineering, 1998

[18] R. Leupers, P. Marwedel: Retargetable Compiler Technology for Em-
bedded Systems – Tools and Applications, Kluwer Academic Publishers,
2001

[19] A.V. Aho, M. Ganapathi, S.W.K Tjiang: Code Generation Using Tree
Matching and Dynamic Programming, ACM Trans. on Programming
Languages and Systems 11, no. 4, 1989

[20] C.W. Fraser, D.R. Hanson, T.A. Proebsting: Engineering a Simple,
Efficient Code Generator Generator, ACM Letters on Programming
Languages and Systems, vol. 1, no. 3, 1992

[21] A.V. Aho, R. Sethi, J.D. Ullman: Compilers - Principles, Techniques,
and Tools, Addison-Wesley, 1986

[22] S. Steinke, N. Grunwald, L. Wehmeyer et al.: Reducing Energy Con-
sumption by Dynamic Copying of Instructions onto Onchip Memory,
International Symposium on System Synthesis (ISSS), 2002

